The function below represents the number of people who have a rumor t hours after it has started.

N(t)=700/1+699eāˆ’0.4t.

(You may wish to sketch a graph of N(t) to help you understand this situation and answer the questions below.)

1) When is the rumor spreading fastest?
t=
I don't know how to solve this.

2 answers

N(t) is the number of people
N'(t) is the rate of spread
N(t) = 700/(1 + 699e^(-0.4t))
N'(t) = 195720/(1 + 699e^(-0.4t))^2
We want the rate of spreading to be fastest. That is, when N'(t) is a maximum -- or when N"(t) = 0
Unfortunately,
N"(t) = 89,315,424 e^(0.4t)/(1 + 699e^(-0.4t))^3
this is just another exponential, so it is never zero. Is the problem maybe written wrong?
its all good I got it, I appreciate it. It was 5ln699/2
Similar Questions
  1. number of people who hear a rumor after t hours isN(t) = 2000/ 1 + 499e^-0.3t How long will it take for 200 people to hear the
    1. answers icon 1 answer
  2. N(t) = 650/1+649 e^āˆ’0.5 t(b) How many people will have heard the rumor after 4 hours? After 9 hours? (c) When will half the
    1. answers icon 2 answers
    1. answers icon 1 answer
    1. answers icon 1 answer
more similar questions