Asked by Anonymous
Not sure how to approach this problem.
Prove the comparison principle for the diffusion equation, Ut = K*Uxx. If u and v are solutions, and if u <= v for t = 0, x = 0, and x=l, then u <= v for 0 <= t < infinity, and 0 <= x <= l
Prove the comparison principle for the diffusion equation, Ut = K*Uxx. If u and v are solutions, and if u <= v for t = 0, x = 0, and x=l, then u <= v for 0 <= t < infinity, and 0 <= x <= l
Answers
Answered by
Damon
If you graph it for a constant positive Uxx (a parabola opening up) and zeros at x = 0 and L for u and above that for v you can see that u will remain less than v as time goes on and the temperature for example U flattens out.
Proving it is quite another matter though and I do not know how off hand
Proving it is quite another matter though and I do not know how off hand
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.