Asked by Boi
A real estate office handles an apartment complex with 50 units. When the rent per unit is $580 per month, all 50 units are occupied. However, when the rent is $625 per month, the average number of occupied units drops to 47. Assume that the relationship between the monthly rent p and the demand x is linear.
(a) Write the equation of the line giving the demand x in terms of the rent p.
x =
(b) Use this equation to predict the number of units occupied when the rent is $640.
units
(c) Predict the number of units occupied when the rent is $595.
units
(a) Write the equation of the line giving the demand x in terms of the rent p.
x =
(b) Use this equation to predict the number of units occupied when the rent is $640.
units
(c) Predict the number of units occupied when the rent is $595.
units
Answers
Answered by
Study Question
Since the equation will be linear, we only need two coordinates to write the equation.
They are given, we can assign the values x = no. of units and y = rent:
x1 = 50, y1 = 580 and x2 = 47, y2 = 625
Find the slope: m = (y2-y1)/(x2-x1)
m = (625-580)/(47 - 50) = 45/-3 = -15 is the slope (m)
a)
Use the point/slope equation
Using the point/slope formula: y - y1 = m(x - x1)
y - 580 = -15(x - 50)
y - 580 = -15x + 750
y = -15x + 750 + 580
y = -15x + 1330 or p(x) = -15x + 1330
They are given, we can assign the values x = no. of units and y = rent:
x1 = 50, y1 = 580 and x2 = 47, y2 = 625
Find the slope: m = (y2-y1)/(x2-x1)
m = (625-580)/(47 - 50) = 45/-3 = -15 is the slope (m)
a)
Use the point/slope equation
Using the point/slope formula: y - y1 = m(x - x1)
y - 580 = -15(x - 50)
y - 580 = -15x + 750
y = -15x + 750 + 580
y = -15x + 1330 or p(x) = -15x + 1330
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.