Asked by jay
A picture frame 5 ft. high hangs on a vertical wall so that the bottom edge is 4 ft. above an observer’s eye. How far (in ft.) should the observer be from the wall so that the vertical angle at the eye subtended by the picture, is greatest.
Answers
Answered by
oobleck
If the eye is x ft from the wall, then we have
θ = angle subtended by frame
Ø = angle to bottom of frame
Now consider
tanØ = 4/x
9/x = tan(θ+Ø) = (tanθ + tanØ)/(1 - tanθ tanØ)
9/x = (tanθ + 4/x)/(1 - tanθ * 4/x)
9/x - 36/x^2 tanθ = tanθ + 4/x
tanθ = 5x/(x^2+36)
sec^2θ dθ/dx = -5(x^2-36)/(x^2+36)^2
dθ/dx = 1/(tan^2θ + 1) * -5(x^2-36)/(x^2+36)^2
= -5(x^2-36)/(((5/(x^2+36))^2+1)(x^2+36)^2)
= -5(x^2-36)/(x^4+72x^2+1321)
since the denominator is never zero, dθ/dx=0 when x=6
θ = angle subtended by frame
Ø = angle to bottom of frame
Now consider
tanØ = 4/x
9/x = tan(θ+Ø) = (tanθ + tanØ)/(1 - tanθ tanØ)
9/x = (tanθ + 4/x)/(1 - tanθ * 4/x)
9/x - 36/x^2 tanθ = tanθ + 4/x
tanθ = 5x/(x^2+36)
sec^2θ dθ/dx = -5(x^2-36)/(x^2+36)^2
dθ/dx = 1/(tan^2θ + 1) * -5(x^2-36)/(x^2+36)^2
= -5(x^2-36)/(((5/(x^2+36))^2+1)(x^2+36)^2)
= -5(x^2-36)/(x^4+72x^2+1321)
since the denominator is never zero, dθ/dx=0 when x=6
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.