To find the mouse's displacement, we can break down the motion into its components: one in the north-south direction and the other in the east-west direction.
Let's start by calculating the displacement in the north-south direction. The mouse scurries 41 cm south, which means it moves in the negative direction. Therefore, we assign a negative value to this displacement. Since there is no information about the time it took for the mouse to move this distance, we assume it was instantaneous. As a result, the equation for displacement in this case simplifies to D = -41 cm.
Next, we calculate the displacement in the east-west direction. The mouse scurries 64 cm west, which is also a negative displacement. Similarly, since we don't have information about the time taken, we assume it happened instantaneously. Thus, the equation for displacement in this case simplifies to D = -64 cm.
Now we have the displacement values for both the north-south component and the east-west component. To find the total displacement, we can use vector addition. Since these are in perpendicular directions, we can simply add the magnitudes and take into account the negative signs.
Displacement in the north-south direction: D1 = -41 cm
Displacement in the east-west direction: D2 = -64 cm
Total displacement: D_total = D1 + D2 = -41 cm + (-64 cm) = -105 cm.
So, the mouse's total displacement is -105 cm. The negative sign indicates that the displacement is in the opposite direction of the mouse's initial position. In this case, it means the mouse's final position is 105 cm south and 105 cm east from its starting point in the maze.