Asked by Bella
A farmer wants to build a barn with one internal wall. One meter of external wall costs $200 and one meter of internal wall costs $80. The farmer wants to construct the barn with the largest possible area and only has $7200 to spend on walls. What dimensions should the farmer choose?
Answers
Answered by
oobleck
If there are 3 walls of length x and 2 of length y
that is, the internal wall is of length x, then
200(2x+2y) + 80x = 7200
480x + 400y = 7200
6x+5y=90
The area is
a = xy = x(90-6x)/5 = 6/5 x(15-x)
Since the vertex of the parabola is midway between the roots, maximum area is at x=15/2, y=9
that is, the internal wall is of length x, then
200(2x+2y) + 80x = 7200
480x + 400y = 7200
6x+5y=90
The area is
a = xy = x(90-6x)/5 = 6/5 x(15-x)
Since the vertex of the parabola is midway between the roots, maximum area is at x=15/2, y=9
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.