Question
Find all complex numbers $z$ such that $z^4 = -4.$
Note: All solutions should be expressed in the form $a+bi$, where $a$ and $b$ are real numbers.
Note: All solutions should be expressed in the form $a+bi$, where $a$ and $b$ are real numbers.
Answers
-4 = 4cisπ
so, if z^4 = -4,
z = √2 cis(π/4 + kπ/2) for k=0,1,2,3
so, if z^4 = -4,
z = √2 cis(π/4 + kπ/2) for k=0,1,2,3
Related Questions
by using the substitution w = z^3, find all the solutions to z^6 - 8z^3 +25 = 0 in complex numbers,...
The equation of the line joining the complex numbers -5 + 4i and 7 + 2i can be expressed in the form...
The equation of the line joining the complex numbers -5 + 4i and 7 + 2i can be expressed in the form...
Let z and w be complex numbers such that
|2z-2|=25,
|z+2w|=5, and
|z+w|=2.
Find |z|.
I f...