Asked by Help

Z1,Z2,…,Zn,… is a sequence of random variables that converge in distribution to another random variable Z ;

Y1,Y2,…,Yn,… is a sequence of random variables each of which takes value in the interval (0,1) , and which converges in probability to a constant c in (0,1) ;

f(x)=x(1−x)−−−−−−−√ .

Does Znf(Yn)f(c) converge in distribution? If yes, enter the limit in terms of Z , Y and c ; if no, enter DNE.

Znf(Yn)f(c)⟶d

Answers

Answered by Lola
Convergence in probability is stronger than convergence in distribution. In particular, for a sequence X1, X2, X3, ⋯ to converge to a random variable X, we must have that P(|Xn−X|≥ϵ) goes to 0 as n→∞, for any ϵ>0. To say that Xn converges in probability to X, we write

Xn →p X.


If you know the definition of Convergence in Probability then you will know if Znf(Yn)f(c) converges in distribution.
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions