Asked by Christian
Given the equation of a line, [x, y, z] = [2, -1, -1] + k[1, 2, 4]
Determine the equation of line 3 through [1, 4 , -3] perpendicular to line 1.
Determine the equation of line 3 through [1, 4 , -3] perpendicular to line 1.
Answers
Answered by
oobleck
No idea. What is line 1? 3?
To be ⊥, v1 • v2 = 0
To be ⊥, v1 • v2 = 0
Answered by
Reiny
all we need is a vector which is perpendicular to <1,2,4>
that is, their dot product is zero
One such vector is [-6,1,4]
So the equation could be [x,y,z] = (1,4,-3) + k[-6,1,4]
note that [-6,1,4] dot [1,2,4] = 0
There would be an infinite number of those lines.
I don't know what your reference to "line 3" is, was there more to this question?
that is, their dot product is zero
One such vector is [-6,1,4]
So the equation could be [x,y,z] = (1,4,-3) + k[-6,1,4]
note that [-6,1,4] dot [1,2,4] = 0
There would be an infinite number of those lines.
I don't know what your reference to "line 3" is, was there more to this question?
Answered by
Christian
@Reiny
Thanks for the help and yes there was another part but I got that already
Thanks for the help and yes there was another part but I got that already
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.