Find the exact value of the slope of the line which is tangent to the curve given by the equation r = 2 + cos θ at θ=pi/2. You must show your work.

My answer is "-1" but my friend has "1/2". Which answer is correct?

1 answer

r = 2+cosθ
r' = -sinθ
r'(pi/2) = -1

The slope of the line is dy/dx
y = rsinθ = 2r + cosθsinθ = 2r + 1/2 sin2θ
dy/dθ = 2r' + cos2θ
dy/dθ at pi/2 = -1

x = rcosθ = 2r + cos^2θ
dx/dθ = 2r' + 2cosθ(-sinθ)
dx/dθ at pi/2 = -2

so, dy/dx = (dy/dθ)/(dx/dθ) at pi/2 = 1/2

Maybe next time you could show your work. Or else ...
Similar Questions
  1. original curve: 2y^3+6(x^2)y-12x^2+6y=1dy/dx=(4x-2xy)/(x^2+y^2+1) a) write an equation of each horizontal tangent line to the
    1. answers icon 1 answer
  2. Consider the curve defined by 2y^3+6X^2(y)- 12x^2 +6y=1 .a. Show that dy/dx= (4x-2xy)/(x^2+y^2+1) b. Write an equation of each
    1. answers icon 3 answers
  3. original curve: 2y^3+6(x^2)y-12x^2+6y=1dy/dx=(4x-2xy)/(x^2+y^2+1) a) write an equation of each horizontal tangent line to the
    1. answers icon 0 answers
  4. original curve: 2y^3+6(x^2)y-12x^2+6y=1dy/dx=(4x-2xy)/(x^2+y^2+1) a) write an equation of each horizontal tangent line to the
    1. answers icon 3 answers
more similar questions