Asked by spencer
Find the mass center of a cylinder with height L and a hemisphere glued to the top with radius R. L=2R. The cylinder is standing up on its bottom end with hemisphere on top. Im so lost on this and cant use the formula to work.
Answers
Answered by
Damon
I assume radius of circular cylinder is r
Volume of cylinder = (2 r* pi r^2) = 2 pi r^3
moment of this cylinder about base = r(2 pi r^3) = 2 pi r^4
Volume of hemisphere = (1/2) (4/3) pi r^2 = (2/3) pi r^3
now to find cg of hemi
moment of hemi about base of hemi:
hemi goes from d = 0 to d = r where d is height of slice above top of cyllinder
the radius at d = sqrt(r^2-d^2)
the area at d = pi(r^2-d^2)
the moment at d = pi(d r^2 - d^3)
integrate over d from d = 0 to d = r
pi (r^4/2 -r^4/4) = pi r^4/4
so hemi cg above base of hemi = (r^4/4)/(2 r^3/3) = r/6
so the cg of the hemi is r/6 above base of hemi
whioh is
2 r+ r/6 = 13 r/6 above the ground
so moment of hemi above ground = (13 r/6)(2/3 pi r^3) = (13/9) pi r^4
now
total volume = 2 pi r^3 + (2/3) pi r^3 = (8/3) pi r^3
total moment = 2 pi r^4 + (13/9 ) pi r^4
= (31/9) pi r^4
so
cg above ground = (31/9)(3/8)r
=(31/24) r
check my arithmetic !
Volume of cylinder = (2 r* pi r^2) = 2 pi r^3
moment of this cylinder about base = r(2 pi r^3) = 2 pi r^4
Volume of hemisphere = (1/2) (4/3) pi r^2 = (2/3) pi r^3
now to find cg of hemi
moment of hemi about base of hemi:
hemi goes from d = 0 to d = r where d is height of slice above top of cyllinder
the radius at d = sqrt(r^2-d^2)
the area at d = pi(r^2-d^2)
the moment at d = pi(d r^2 - d^3)
integrate over d from d = 0 to d = r
pi (r^4/2 -r^4/4) = pi r^4/4
so hemi cg above base of hemi = (r^4/4)/(2 r^3/3) = r/6
so the cg of the hemi is r/6 above base of hemi
whioh is
2 r+ r/6 = 13 r/6 above the ground
so moment of hemi above ground = (13 r/6)(2/3 pi r^3) = (13/9) pi r^4
now
total volume = 2 pi r^3 + (2/3) pi r^3 = (8/3) pi r^3
total moment = 2 pi r^4 + (13/9 ) pi r^4
= (31/9) pi r^4
so
cg above ground = (31/9)(3/8)r
=(31/24) r
check my arithmetic !
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.