Asked by Anonymous
If a bank offers interest at a nominal rate of 6%, how much greater is the effective rate if interest is compounded continuously than if the compounding is quarterly?
I don't get this question at all... All I'm given is the rate and how am I suppose to compare compounded continuously and quarterly if I'm not given the initial value, time and so on...
I don't get this question at all... All I'm given is the rate and how am I suppose to compare compounded continuously and quarterly if I'm not given the initial value, time and so on...
Answers
Answered by
Damon
well, lets compare both to compounding once a year for n years.
Once a year
final/original = 1.06^n
Four times a year
6/4 = 1.5% per quarter
final/original = 1.015^4n
Continuously
final/original = e^.06 n
Well, lets see how four times a year compares to once a year
compare 1 = 1.015^4n / 1.06^n
ln compare 1 = 4 n ln 1.015 - n ln 1.06
= n(.05955445-.0582689) = .0012855419 n
so
compare 1 = e^.0012855419 n
or .12855 % better than once a year
Now do the same for continuous
compare 2 = e^06 n / 1.06^n
ln compare 2 = .06 n - n ln 1.06
= .001731 n
compare 2 = e^.001731 n
or .1731 % better than once a year
Once a year
final/original = 1.06^n
Four times a year
6/4 = 1.5% per quarter
final/original = 1.015^4n
Continuously
final/original = e^.06 n
Well, lets see how four times a year compares to once a year
compare 1 = 1.015^4n / 1.06^n
ln compare 1 = 4 n ln 1.015 - n ln 1.06
= n(.05955445-.0582689) = .0012855419 n
so
compare 1 = e^.0012855419 n
or .12855 % better than once a year
Now do the same for continuous
compare 2 = e^06 n / 1.06^n
ln compare 2 = .06 n - n ln 1.06
= .001731 n
compare 2 = e^.001731 n
or .1731 % better than once a year
Answered by
drwls
Quarterly componding of interest after one year at 6% annual rate gives you an annual yield of
(1 + 0.06/4)^4 - 1 = 6.136%
Continuous compounding requires you to consider limits. The answer is
Limit (as n approaches infinity) of
1 + 0.06/n)^n - 1
Calculus shows that this equals
e^(0.06) -1 = 6.184%
If you don't understand limits and e, consider the "daily interest" case, with n = 365. In that case the annual yield is 6.183%
(1 + 0.06/4)^4 - 1 = 6.136%
Continuous compounding requires you to consider limits. The answer is
Limit (as n approaches infinity) of
1 + 0.06/n)^n - 1
Calculus shows that this equals
e^(0.06) -1 = 6.184%
If you don't understand limits and e, consider the "daily interest" case, with n = 365. In that case the annual yield is 6.183%
Answered by
Damon
Just do them each for one year
yearly 1.06
quarterly
1.015^4 = 1.06136 or 6.136 % yearly
continuously
e^.06 = 1.06184 or 6.184 % yearly
yearly 1.06
quarterly
1.015^4 = 1.06136 or 6.136 % yearly
continuously
e^.06 = 1.06184 or 6.184 % yearly
Answered by
Anonymous
thank you both for your help... I like Damon's method as it seems straightforward and I can follow it...
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.