Question
A ball in the shape of a uniform spherical shell (like a soccer ball; I = 2/3 mr2) of mass 1.5 kg and radius 15 cm rolls down a 35 degree incline that is 6.0 m high, measured vertically. The ball starts from rest, and there is enough friction on the incline to prevent slipping of the ball; thus the ball rotates.
a) How fast is the ball moving forward when it reaches the bottom of the incline, and what is its angular speed at that instant?
b) If there were no friction on the incline, how fast would the ball be moving forward and what would be its angular speed at the bottom?
I think I have a lot of b... Can you please check what I have so far and help me with what I'm getting wrong? I have to get all parts of this question correct to get any credit at all so I would appreciate any direction. Thanks!
For a)
F(incline) = mgsinθ = (1.5)(9.8)(sin35) = 8.43 N
x=6/sin35 ==> x = 10.46 (hypotenuse of incline)
I'm not sure where to go from here...
For b) I have:
(kinetic)i + (gravitational)i = (kinetic)f + (gravitational)f... so,
1/2mv^2 + mgy = 1/2 mv^2 + mgy (initial v=0, final y=0), so...
mgy = 1/2mv^2
v^2 = 2gy
v = sqrt(2gy) ==> sqrt(2(9.8)(6)) = 10.8 m/s = v
Then, to find angular speed,
w=v/r
w= 10.8 (m/s)/15 = 0.72
Then K(rot) = 1/2Iw^2
1/2(2/3(1.5)(15^2))(72^2) = 58.32 angular speed, but I know this isn't right. What did I do wrong?
a) How fast is the ball moving forward when it reaches the bottom of the incline, and what is its angular speed at that instant?
b) If there were no friction on the incline, how fast would the ball be moving forward and what would be its angular speed at the bottom?
I think I have a lot of b... Can you please check what I have so far and help me with what I'm getting wrong? I have to get all parts of this question correct to get any credit at all so I would appreciate any direction. Thanks!
For a)
F(incline) = mgsinθ = (1.5)(9.8)(sin35) = 8.43 N
x=6/sin35 ==> x = 10.46 (hypotenuse of incline)
I'm not sure where to go from here...
For b) I have:
(kinetic)i + (gravitational)i = (kinetic)f + (gravitational)f... so,
1/2mv^2 + mgy = 1/2 mv^2 + mgy (initial v=0, final y=0), so...
mgy = 1/2mv^2
v^2 = 2gy
v = sqrt(2gy) ==> sqrt(2(9.8)(6)) = 10.8 m/s = v
Then, to find angular speed,
w=v/r
w= 10.8 (m/s)/15 = 0.72
Then K(rot) = 1/2Iw^2
1/2(2/3(1.5)(15^2))(72^2) = 58.32 angular speed, but I know this isn't right. What did I do wrong?
Answers
oh nah lmao
Related Questions
A tennis ball, starting from rest, rolls down a hill. At the end of the hill the ball becomes airbor...
A soccer ball of mass 550g is at rest on the ground. The soccer ball is kicked with a force of 108N....
A tennis ball, starting from rest at a height h = 2.10 m, rolls down the hill. At the end of the hil...
A soccer ball and bowling ball, with the same areas and different masses, are dropped at the same ti...