Asked by Meghan
Consider two nonnegative numbers x and y such that
x + y = 12.
Find the values of x and y that optimize the following quantity.
xy
Maximize the quantity.
{x, y} =
Minimize the quantity. (Order your answers from smallest to largest x, then from smallest to largest y.)
{x, y}
=
{x, y}
=
x + y = 12.
Find the values of x and y that optimize the following quantity.
xy
Maximize the quantity.
{x, y} =
Minimize the quantity. (Order your answers from smallest to largest x, then from smallest to largest y.)
{x, y}
=
{x, y}
=
Answers
Answered by
Steve
xy = x(12-x)
that is a parabola with vertex at x=6
This is just an illustration that the rectangle with the largest area for a given perimeter is a square.
clearly the minimum is achieved when the rectangle is just a line of length 12 and area zero.
that is a parabola with vertex at x=6
This is just an illustration that the rectangle with the largest area for a given perimeter is a square.
clearly the minimum is achieved when the rectangle is just a line of length 12 and area zero.
There are no AI answers yet. The ability to request AI answers is coming soon!