Question
Determine the number of positive integers n that satisfy:
1/2 < n/n+1 < 99/101
I don't know how to solve this besides plugging in random numbers, which would take all day. Any other suggestions for a faster way to solve it?
Thank you!
1/2 < n/n+1 < 99/101
I don't know how to solve this besides plugging in random numbers, which would take all day. Any other suggestions for a faster way to solve it?
Thank you!
Answers
The smallest number that satisfies
1/2 < (n/n+1) is 2/3
The largest number that satisfies
n/(n+1) < 99/101 is 49/50.
Here's proof of that:
49/50 = 0.980000
99/101 = 0.980198
50/51 = 0.98039
So all n/(n+1) numbers in the series
2/3, 3/4, 4/5 ... 49/50 satisfy the inequality.
There are therefore 48 numbers n that satisfy the condition.
1/2 < (n/n+1) is 2/3
The largest number that satisfies
n/(n+1) < 99/101 is 49/50.
Here's proof of that:
49/50 = 0.980000
99/101 = 0.980198
50/51 = 0.98039
So all n/(n+1) numbers in the series
2/3, 3/4, 4/5 ... 49/50 satisfy the inequality.
There are therefore 48 numbers n that satisfy the condition.
maybe the largest is 99/100
Related Questions
what three positive integers a, b, and c satisfy a^n+b^n=c^n, where n is a number greater than two
If P(e)
gives the profit from selling e number of eggs, which of the following is the most appropr...
If P(e)
gives the profit from selling e number of eggs, which of the following is the most appro...
Find the number of ordered triples (a,b,c) of positive integers that satisfy
a = \gcd(b,c) + 33
b...