Asked by Lauren
Find the maximum value of the objective function and the values of x and y for which it occurs.
F = 5x + 2y
x + 2y (greater than or equal to) 6
2x + y (greater than or equal to) 6
Both x and y are greater than or equal to 0.
I don't understand how to do this! And I can't remember how to graph those functions. It's been a while. :-/ Any help would be GREATLY appreciated! Thank you in advance!!!
F = 5x + 2y
x + 2y (greater than or equal to) 6
2x + y (greater than or equal to) 6
Both x and y are greater than or equal to 0.
I don't understand how to do this! And I can't remember how to graph those functions. It's been a while. :-/ Any help would be GREATLY appreciated! Thank you in advance!!!
Answers
Answered by
Reiny
This is a problem is what is called linear programming.
I have a sneaking suspicion that the objective function F = 5x+2 should have a minimum value.
e.g. I could pick a huge x and a huge y
say, x=500, y = 800
then F = 2500 + 1600 = 4100
and (500,800) satisfy both of the inequations
I could get a "larger" value of F by increasing my x's and y's.
So F has no maximum.
sketch x+2y ≥ 6
So let's assume you meant to find a Minimum of F
Now to your question:
the simplest way is to graph x + 2y = 6 and shade in the region above that line including the line.
I would just mentally calculate the x and y intercepts to get (0,3) and (6,0)
do the same thing for 2x + y ≥ 6
Now shade in the region that belongs to both x+2y ≥ 6 and 2x+y≥6
It is easy to see that they intersect at (2,2)
So you have 3 critical values
(0,6) (2,2) and (6,0)
which of these gives the smallest value of F ?
try (2,2)
F = 5(2) + 2(2) = 14
for (0,6)
F = 5(0)+2(6) = 12
for (6,0)
F = 5(6) + 2(0) = 30
So what do you think?
Check my arithmetic, I tend to make silly errors lately.
I have a sneaking suspicion that the objective function F = 5x+2 should have a minimum value.
e.g. I could pick a huge x and a huge y
say, x=500, y = 800
then F = 2500 + 1600 = 4100
and (500,800) satisfy both of the inequations
I could get a "larger" value of F by increasing my x's and y's.
So F has no maximum.
sketch x+2y ≥ 6
So let's assume you meant to find a Minimum of F
Now to your question:
the simplest way is to graph x + 2y = 6 and shade in the region above that line including the line.
I would just mentally calculate the x and y intercepts to get (0,3) and (6,0)
do the same thing for 2x + y ≥ 6
Now shade in the region that belongs to both x+2y ≥ 6 and 2x+y≥6
It is easy to see that they intersect at (2,2)
So you have 3 critical values
(0,6) (2,2) and (6,0)
which of these gives the smallest value of F ?
try (2,2)
F = 5(2) + 2(2) = 14
for (0,6)
F = 5(0)+2(6) = 12
for (6,0)
F = 5(6) + 2(0) = 30
So what do you think?
Check my arithmetic, I tend to make silly errors lately.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.