Question
A ladder of length 2L and mass M is positioned on level ground leaning against a wall such that the angle between the ladder and the horizontal is α. The coefficient of static friction between the ladder and the wall and between the ladder and the ground is μstatic =0 .65. The centre of mass of the ladder is halfway along it.
For the ladder to be in mechanical equilibrium:
(i) Write down equations for the total x- andy-components of the 5 forces acting on the ladder.
(ii) Consider torques about the centre of the ladder. In which direction (into or out of the page) does the torque due to each of the 5 forces force act?
(iii) Write down an equation for the sum of the torques about the centre of mass of the ladder.
(iv) Use your equation for the torques to derive an expression for tan α in terms of the magnitudes of the forces acting.
My answers so far:
(appologies for the latex, if someone has time can they just have a quick look and see if there is anything glaringly wrong!)
i)
The sum of the horizontal and vertical forces should equal zero.
Horizontal:
$F_2 = \mu F_1$
Vertical:
$mg = F_1+\mu F_2$
ii)
$\sum_{anticlockwise}=\sum_{clockwise}$
Anti-clockwise:
$\mu F_2\times l\cos \alpha+F_2\times l\sin \alpha+ \mu F_1\times l\sin \alpha$
Clockwise:
$F_1 \times l\cos\alpha$
iii)
In equilibrium, the sum of anticlockwise moments is equal to the sum of clockwise moments at any point.
$\mu F_2\times l\cos\alpha+F_2\times l\sin\alpha+ \mu F_1\times l\sin\alpha = F_1\times l\cos\alpha$
iv)
$(F_2+ \mu F_1)\sin \alpha = (F_1- \mu F_2)\cos\alpha$
$\tan\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{(F_1- \mu F_2)}{(F_2+ \mu F_1)}$
$F_2 = \mu F_1$
$ \tan\alpha = \frac{(F_1- \mu^2F_1)}{(2\mu F_1)}$
$(1-\mu^2/2\mu)$
Thank you.
For the ladder to be in mechanical equilibrium:
(i) Write down equations for the total x- andy-components of the 5 forces acting on the ladder.
(ii) Consider torques about the centre of the ladder. In which direction (into or out of the page) does the torque due to each of the 5 forces force act?
(iii) Write down an equation for the sum of the torques about the centre of mass of the ladder.
(iv) Use your equation for the torques to derive an expression for tan α in terms of the magnitudes of the forces acting.
My answers so far:
(appologies for the latex, if someone has time can they just have a quick look and see if there is anything glaringly wrong!)
i)
The sum of the horizontal and vertical forces should equal zero.
Horizontal:
$F_2 = \mu F_1$
Vertical:
$mg = F_1+\mu F_2$
ii)
$\sum_{anticlockwise}=\sum_{clockwise}$
Anti-clockwise:
$\mu F_2\times l\cos \alpha+F_2\times l\sin \alpha+ \mu F_1\times l\sin \alpha$
Clockwise:
$F_1 \times l\cos\alpha$
iii)
In equilibrium, the sum of anticlockwise moments is equal to the sum of clockwise moments at any point.
$\mu F_2\times l\cos\alpha+F_2\times l\sin\alpha+ \mu F_1\times l\sin\alpha = F_1\times l\cos\alpha$
iv)
$(F_2+ \mu F_1)\sin \alpha = (F_1- \mu F_2)\cos\alpha$
$\tan\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{(F_1- \mu F_2)}{(F_2+ \mu F_1)}$
$F_2 = \mu F_1$
$ \tan\alpha = \frac{(F_1- \mu^2F_1)}{(2\mu F_1)}$
$(1-\mu^2/2\mu)$
Thank you.
Answers
Related Questions
A uniform ladder of mass 46 kg and 3.0 m in length is leaning against a frictionless vertical wall a...
A ladder is needed to reach the top of a second floor window, A distance of 20 feet above the (leve...
A ladder is leaning against the side of a house. The base of the ladder is 8 feet from the wall and...