Asked by Girly Girl
                I really need help on this as I have tried multiple times and my answers are none of these. Please help
1. Find (f*g)(x) where f(x)=1/(x^2+3) and g(x)=sqrt(x-2).
a. (f*g)(x)=1/x-2
b. (f*g)(x)=1/sqrt(x-2)+3
c. (f*g)(x)=1/x+1
d. (f*g)(x)=sqrt(-2x^2-5/x^2+3)
2. Find (g*f)(x) where f(x)=x^2-2 and g(x)=5x-8.
a. (g*f)(x)=5x^2-18
b. (g*f)(x)=5x^2-4
c. (g*f)(x)=25x^2+80x+62
d. (g*f)(x)=5x^2-10
3. Determine the domain of the function (f*g)(x) where f(x)=x^2/x^2-1 and g(x)=sqrt(x+4).
a. (-∞,-1)∪(-1,1)∪(1,∞)
b. (-4,-3)∪(-3,∞)
c. (-∞,-3)∪(-3,∞)
d. [-4,-3)∪(-3,∞)
            
        1. Find (f*g)(x) where f(x)=1/(x^2+3) and g(x)=sqrt(x-2).
a. (f*g)(x)=1/x-2
b. (f*g)(x)=1/sqrt(x-2)+3
c. (f*g)(x)=1/x+1
d. (f*g)(x)=sqrt(-2x^2-5/x^2+3)
2. Find (g*f)(x) where f(x)=x^2-2 and g(x)=5x-8.
a. (g*f)(x)=5x^2-18
b. (g*f)(x)=5x^2-4
c. (g*f)(x)=25x^2+80x+62
d. (g*f)(x)=5x^2-10
3. Determine the domain of the function (f*g)(x) where f(x)=x^2/x^2-1 and g(x)=sqrt(x+4).
a. (-∞,-1)∪(-1,1)∪(1,∞)
b. (-4,-3)∪(-3,∞)
c. (-∞,-3)∪(-3,∞)
d. [-4,-3)∪(-3,∞)
Answers
                    Answered by
            Scott
            
    for functions a(x) and b(x)
(a*b)(x) = a[b(x)]
1. (f*g)(x) = 1 / {[g(x)]^2 + 3}
... = 1 / {[√(x-2)]^2 - 3}
... = 1 / [(x - 2) + 3] = 1 / (x + 1)
substitute the 2nd function in place of x in the 1st function
    
(a*b)(x) = a[b(x)]
1. (f*g)(x) = 1 / {[g(x)]^2 + 3}
... = 1 / {[√(x-2)]^2 - 3}
... = 1 / [(x - 2) + 3] = 1 / (x + 1)
substitute the 2nd function in place of x in the 1st function
                    Answered by
            Steve
            
    For #3,
(f◦g)(x) = f(g) = g^2/(g^2-1) = (x+4)/(x+3)
Since f(g) is not defined for g^2=1
x = -3 must be excluded
g(x) is undefined when x < -4
x = 1,-1 are in the domain of f◦g even though they are not in the domain of f.
    
(f◦g)(x) = f(g) = g^2/(g^2-1) = (x+4)/(x+3)
Since f(g) is not defined for g^2=1
x = -3 must be excluded
g(x) is undefined when x < -4
x = 1,-1 are in the domain of f◦g even though they are not in the domain of f.
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.