Question
The bottom of a picture five feet tall is four feet above the level of an observer's eyes. How far from the wall on which the picture hangs should the observer stand in order that the picture subtends the greatest possible angle at the observer's eyes?
Answers
Let
Ø = angle to bottom of picture
θ = angle subtended by the picture
x = distance from wall to observer
tanØ = 4/x
tan(θ+Ø) = 9/x
so
(tanθ+tanØ)/(1-tanθtanØ) = 9/x
(tanθ+(4/x))/(1-(4/x)tanθ) = 9/x
see what you can do with that.
or, if
y=distance from eye to bottom of picture
z= distance to top of picture,
x^2+16 = y^2
x^2+81 = z^2
Now the law of cosines says that
5^2 = y^2+z^2-2yz cosθ
25 = (x^2+16)+(x^2+81)-2√(x^2+16)√(x^2+81) cosθ
Ø = angle to bottom of picture
θ = angle subtended by the picture
x = distance from wall to observer
tanØ = 4/x
tan(θ+Ø) = 9/x
so
(tanθ+tanØ)/(1-tanθtanØ) = 9/x
(tanθ+(4/x))/(1-(4/x)tanθ) = 9/x
see what you can do with that.
or, if
y=distance from eye to bottom of picture
z= distance to top of picture,
x^2+16 = y^2
x^2+81 = z^2
Now the law of cosines says that
5^2 = y^2+z^2-2yz cosθ
25 = (x^2+16)+(x^2+81)-2√(x^2+16)√(x^2+81) cosθ
Related Questions
A picture is 5 feet high and the eye level of an observer is 2 feet below the bottom
edge of the...
A picture 5 feet in height is hung on a wall so that its bot-ton1.is 8 feet from the floor, as shown...
doug digs a hole that is 1 7/10 feet below ground level. he plantes a bush that is 3 1/5 feet tall f...
A picture of a mountain range and ocean near it is shown. The top height is 4000 feet and the bottom...