Asked by javeria
i need help understanding this question? can some one tell me what exactly i have to do in it
7. Suppose a student carrying a flu virus returns to an isolated
college campus of 1000 students. Determine a differential
equation for the number of people x(t) who have
contracted the flu if the rate at which the disease spreads
is proportional to the number of interactions between the
number of students who have the flu and the number of
students who have not yet been exposed to it.
7. Suppose a student carrying a flu virus returns to an isolated
college campus of 1000 students. Determine a differential
equation for the number of people x(t) who have
contracted the flu if the rate at which the disease spreads
is proportional to the number of interactions between the
number of students who have the flu and the number of
students who have not yet been exposed to it.
Answers
Answered by
Steve
If w is proportional to u and v, then w = kuv. So, we are told that
dx/dt = kx(1000-x)
I have set it up so that
"the rate at which the disease spreads is proportional to the number of students who have the flu and the number of
students who do not yet have it.
I have no way of estimating how many have been exposed to it, or determining the students' interactions. A poorly worded question. Maybe you have further insight.
dx/dt = kx(1000-x)
I have set it up so that
"the rate at which the disease spreads is proportional to the number of students who have the flu and the number of
students who do not yet have it.
I have no way of estimating how many have been exposed to it, or determining the students' interactions. A poorly worded question. Maybe you have further insight.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.