Asked by Liv
Prove the following identities.
1. 1+cosx/1-cosx = secx + 1/secx -1
2. (tanx + cotx)^2=sec^2x csc^2x
3. cos(x+y) cos(x-y)= cos^2x - sin^2y
1. 1+cosx/1-cosx = secx + 1/secx -1
2. (tanx + cotx)^2=sec^2x csc^2x
3. cos(x+y) cos(x-y)= cos^2x - sin^2y
Answers
Answered by
Reiny
correction for #1, should say:
(1+cosx)/(1-cosx) = (secx + 1)/(secx - 1)
RS = (1/cosx + 1)/(1/cosx - 1)
= (1/cosx + 1)/(1/cosx - 1) * cosx/cox
= (1+ cosx)/(1 - cosx)
= LS
Well, that was easy.
#2, hint: change everything to sines and cosines
expand and simplify the LS
#3, use the expansion for cos(A ± B), multiply the result and watch what happens.
hint: remember a^4 - b^4 = (a^2+b^2)(a^2-b^2)
(1+cosx)/(1-cosx) = (secx + 1)/(secx - 1)
RS = (1/cosx + 1)/(1/cosx - 1)
= (1/cosx + 1)/(1/cosx - 1) * cosx/cox
= (1+ cosx)/(1 - cosx)
= LS
Well, that was easy.
#2, hint: change everything to sines and cosines
expand and simplify the LS
#3, use the expansion for cos(A ± B), multiply the result and watch what happens.
hint: remember a^4 - b^4 = (a^2+b^2)(a^2-b^2)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.