Asked by nadun
A particle P, starting from rest at A, moves in a straight line ABCD. It accelerates uniformly at 5ms-2 from A to B. From B to C it travels at constant velocity, and from C to D it slows down uniformly at 4ms-2, coming to rest at D. Given that AB=10m and that the total time P the particle is in motion is 20s, find the distance BC
Answers
Answered by
Steve
Let the three time periods be x,y,z seconds
x+y+z = 20
(5/2 x^2) + (5xy) + (5xz-2z^2) = 20
Now, since it decelerates at 4/5 the rate that it took to accelerate, it will take 5/4 as long to come to rest. So, our third equation is
z = 5/4 x
Now just solve for the time periods, and then you can get the three distances.
x+y+z = 20
(5/2 x^2) + (5xy) + (5xz-2z^2) = 20
Now, since it decelerates at 4/5 the rate that it took to accelerate, it will take 5/4 as long to come to rest. So, our third equation is
z = 5/4 x
Now just solve for the time periods, and then you can get the three distances.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.