Asked by Rob
An agency charges $15 per person for a trip for groups of no less than 30 people. But for each person above the 30, the charge (for everyone!) will be reduced by $0.15. Write a revenue function for the agency usin x as number of people above 30. What size group will maximize the total revenue for the agency if the trip is limited to at most 50 people?
I will be happy to critique your thinking.
I will be happy to critique your thinking.
Answers
Answered by
Ed
Since the agency only takes groups of no less than 30 people, the minimum profit for a single trip is $15*30 people.
Let x be the number of people above 30.
The number of people is then 30+x.
The [Total Revenue] is equal to the
[price charged for each person] times the [number of people]
[price charged for each]=$15-.15*x
Notice if x=0, then the price charged is equal to $15 and the number of people in group is 30, which is the minum group size the company will allow for a trip.
Thus our Total Revenue Function is
[Total Revenue] =
[price charged for each person]*[number of people]
=($15-$.15*x)*(30+x)
R(x)= ($15-$.15*x)*(30+x)=450+10.5x-.15*x^2 after foiling everything out.
R'(x)=10.5-2*.15*x is the derivative of the Revenue function and the Revenue will be maximized at a value of x for which R'(x)=0.
Setting R'(x)=0 implies 10.5-2*.15*x=0, which implies that x=35 people. The group size was constrained to be at least 30 people and at most 50 people, and since the number 35 is between 30 and 50, then a group size of 35 people is a valid solution for this problem: according to the revenue function R(x),and the constraints on groups sizes given above above, the company will maximize its profit when it has groups of size 35. Now I must go breath.
Let x be the number of people above 30.
The number of people is then 30+x.
The [Total Revenue] is equal to the
[price charged for each person] times the [number of people]
[price charged for each]=$15-.15*x
Notice if x=0, then the price charged is equal to $15 and the number of people in group is 30, which is the minum group size the company will allow for a trip.
Thus our Total Revenue Function is
[Total Revenue] =
[price charged for each person]*[number of people]
=($15-$.15*x)*(30+x)
R(x)= ($15-$.15*x)*(30+x)=450+10.5x-.15*x^2 after foiling everything out.
R'(x)=10.5-2*.15*x is the derivative of the Revenue function and the Revenue will be maximized at a value of x for which R'(x)=0.
Setting R'(x)=0 implies 10.5-2*.15*x=0, which implies that x=35 people. The group size was constrained to be at least 30 people and at most 50 people, and since the number 35 is between 30 and 50, then a group size of 35 people is a valid solution for this problem: according to the revenue function R(x),and the constraints on groups sizes given above above, the company will maximize its profit when it has groups of size 35. Now I must go breath.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.