Asked by Nyanka
                What is an equation for the translation (x - 2)^2 + (y + 1)^2 = 16 by 4 units left and 6 units up?
1) (x + 2)^2 + (y - 5)^2 = 16
2) (x - 2)^2 + (y - 5)^2 = 16
3) (x + 5)^2 + (y - 2)^2 = 16
4) (x + 4)^2 + (y - 5)^2 = 16
            
        1) (x + 2)^2 + (y - 5)^2 = 16
2) (x - 2)^2 + (y - 5)^2 = 16
3) (x + 5)^2 + (y - 2)^2 = 16
4) (x + 4)^2 + (y - 5)^2 = 16
Answers
                    Answered by
            Reiny
            
    the centre of (x - 2)^2 + (y + 1)^2 = 16
is (2,-1)
Now move that centre 4 units to the left and 6 units up
New centre is .......
new equation is .......
    
is (2,-1)
Now move that centre 4 units to the left and 6 units up
New centre is .......
new equation is .......
                    Answered by
            Leon
            
    They mean the answer is A. Just took the assignment. 
    
                    Answered by
            Anonymous
            
    Does anyone have the whole test?
    
                    Answered by
            Anonymous
            
    Anybody have the answers to the whole test 
    
                    Answered by
            Wise One
            
    Legend has it that Anonymous is still looking for the test answers to this day
    
                    Answered by
            Anonymous
            
    Anyone have answers to whole test?
    
                    Answered by
            Cayde-6
            
    I got yall hold up
    
                    Answered by
            Cayde-6
            
    Nvm the questions are different for everyone
    
                    Answered by
            i hope ur having a great day :)
            
    i mean u could just write out the entire question and put the answer in
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.