Evaluate the lim

a. lim x--> 64 (cube root x-4/x-64)

(∛x-4)/(x-64) -> 0/0

so then

let cube root x = u

u-4/u^3-64

u-4/u^3-64 = u-4/u-4(u^2+4u+16)

the u-4 cancel each other out leaving

lim x->64 = 1/u^2+4u+16

1/64^2+4(64)=16

oddly i find the number to large am i doing this right?

5 answers

* 1/64^2+4(64)+16
let ∛x = u
then x = u^3
and as x---> 64, u ---> 4

lim (∛x-4)/(x-64) , as x --->64
= lim (u - 4)/(u^3 - 64) , as u ---> 4
= lim (u-4)((u-4)(u^2 + 4u + 16) , u -->4
= lim 1/(u^2 + 4u + 16), as u --> 4
= 1/(16 + 16 + 16)
= 1/48

When you make your switch from x to u, you also have to make the change in the approach value
Ok thanks for the help,it helped a lot!!!
would the lim approaches 64 is it 1/48 or is it when the lim approaches 4 is 1/48
For the given substitution , the two statements:

lim (∛x-4)/(x-64) , as x --->64
and
lim (u - 4)/(u^3 - 64) , as u ---> 4

are equivalent, so

lim (∛x-4)/(x-64) , as x --->64
= 1/48
and
lim (u - 4)/(u^3 - 64) , as u ---> 4
= 48

They are equivalent questions, we made them that way using the substitution.

here is a little trick with your calculator.
pick a value of x close to the original approach value
e.g. let x = 64.0001
now sub into the original expression
(∛64.0001 - 4)/(64.0001 - 4)
= .000003083/.0001
= .0208332
and 1/48 = .0208333
Now that is not bad!!!!

I used to encourage my students to use this to check their answer.
You could also do this before you work out the question to predict your answer.
Similar Questions
  1. Which expression simplifies to 87–√3?(1 point) Responses −67–√3−27–√3 negative 6 cube root of 7 minus 2 cube
    1. answers icon 1 answer
  2. Could you please help me with some math problems? Thanks!Add or subtract terms wherever possible. 1. 2 cube root of 135 + cube
    1. answers icon 0 answers
    1. answers icon 1 answer
  3. Which expression simplifies to 87–√3?(1 point) Responses −67–√3−27–√3 negative 6 cube root of 7 minus 2 cube
    1. answers icon 3 answers
more similar questions