Asked by Mae
                1. Some rational functions have asymptotes, others have holes, and some have both. Explain how you can identify, without graphing, which graphical features a rational function will have.
Can someone explain this thoroughly ? I don't understand. thanks in advance.
            
        Can someone explain this thoroughly ? I don't understand. thanks in advance.
Answers
                    Answered by
            Reiny
            
    the culprit for asymptotes and holes is the denominator.
If for some value of the variable, then denominator is zero, but the numerator is NOT zero, you will have an asymptote.
If for some value of the variable, then denominator is zero, but the numerator is ALSO zero, you will have a hole
e.g. y = (x-2)/(x^2 - 4)
notice this reduces to y = 1/(x+2)
so if x = 2 in the original we get 0/0, so there is a hole at (2,1/4)
if x = -2 we get -4/0 in the original, so x = -2 is an asymptote
    
If for some value of the variable, then denominator is zero, but the numerator is NOT zero, you will have an asymptote.
If for some value of the variable, then denominator is zero, but the numerator is ALSO zero, you will have a hole
e.g. y = (x-2)/(x^2 - 4)
notice this reduces to y = 1/(x+2)
so if x = 2 in the original we get 0/0, so there is a hole at (2,1/4)
if x = -2 we get -4/0 in the original, so x = -2 is an asymptote
                    Answered by
            Mae
            
    how would we know if it has both holes and asymptotes?
    
                    Answered by
            Enlia
            
    What is the domain and range of 2x^2-18/x^2+3x-10
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.