To simplify this expression, we factor out the common factor of x^4 from both terms in the numerator:
-12x^4/x^4+8x^5 = -12/x + 8x
Now we have a simplified expression.
-12x^4/x^4+8x^5 Simplify
3 answers
Here are the options
A- -12/1+8x where x =/ -1/8
B- -12/1+8x where x =/ -1/8, 0
A- -12/1+8x where x =/ -1/8
B- -12/1+8x where x =/ -1/8, 0
The correct option is A: -12/1+8x where x ≠ -1/8.
We can see that the denominator cannot be equal to zero since it is x^4+8x^5, which is never zero for any value of x. Therefore, there are no additional restrictions on x and we only need to exclude x = -1/8, which would make the denominator zero.
So, the simplified expression is -12/1+8x where x ≠ -1/8.
We can see that the denominator cannot be equal to zero since it is x^4+8x^5, which is never zero for any value of x. Therefore, there are no additional restrictions on x and we only need to exclude x = -1/8, which would make the denominator zero.
So, the simplified expression is -12/1+8x where x ≠ -1/8.