Asked by Vincy
                Suppose the production function for widgets is given by: 
Q = KL - 0.8K^2 - 0.2L^2
where Q represents the quantity of widgets produced, K represents the annual capital input and L represents annual labor input.
(a) For K = 10, what is the average productivity of labor equal to?
-do i substitute k=10 into Q, and then what do i do to find the average productivity of labor?
(b) At what level of labor input does this average productivity reach a maximum? How many widgets are produced at this point?
(c) Again assuming that K = 10, what is the marginal product of labor equal to?
            
            
        Q = KL - 0.8K^2 - 0.2L^2
where Q represents the quantity of widgets produced, K represents the annual capital input and L represents annual labor input.
(a) For K = 10, what is the average productivity of labor equal to?
-do i substitute k=10 into Q, and then what do i do to find the average productivity of labor?
(b) At what level of labor input does this average productivity reach a maximum? How many widgets are produced at this point?
(c) Again assuming that K = 10, what is the marginal product of labor equal to?
Answers
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.