Asked by Anonymous
I don't understand how log2 √(1/2) turned into log2 2^(-1/2).
Quote:
You will have to know the 3 prime properties of logs
1. logk (AB) = logk A + logk B
2. logk(A/B) = logk A - logk B
3. logk (A^n) = n logk A
where k is any positive number , k ≠ 1
so log2√36 - log2 log2</sub√72
= log2 (√36/√72)
= log2 √(36/72)
= log2 √(1/2)
= log2 2^(-1/2)
= (-1/2) log2 2
= (-1/2)(1)
= -1/2
Quote:
You will have to know the 3 prime properties of logs
1. logk (AB) = logk A + logk B
2. logk(A/B) = logk A - logk B
3. logk (A^n) = n logk A
where k is any positive number , k ≠ 1
so log2√36 - log2 log2</sub√72
= log2 (√36/√72)
= log2 √(36/72)
= log2 √(1/2)
= log2 2^(-1/2)
= (-1/2) log2 2
= (-1/2)(1)
= -1/2
Answers
Answered by
Reiny
It would be so much easier if we could identify you by some name other than Anonymous.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.