Asked by Anonymous
                Determine whether the polygons with the given vertices are similar. Support your answer by describing a transformation.
V(3,2) W(8,2) X(1,5)
R(6,4) S(16,4) T(3,15)
I think they are not similar because V and W are dilated by 2 and X is dilated by 3. They need to be dilated by the same factor to be similar.
            
        V(3,2) W(8,2) X(1,5)
R(6,4) S(16,4) T(3,15)
I think they are not similar because V and W are dilated by 2 and X is dilated by 3. They need to be dilated by the same factor to be similar.
Answers
                    Answered by
            Damon
            
    agree
    
                    Answered by
            Damon
            
    V to W = sqrt (25+0) = 5
R to S = sqrt (100+0) = 10
W to X =sqrt(49+9) = sqrt(58)
S to T = sqrt(169+121) = sqrt (5*58) oh my :(, not twice, would be sqrt 4*58 if similar
    
R to S = sqrt (100+0) = 10
W to X =sqrt(49+9) = sqrt(58)
S to T = sqrt(169+121) = sqrt (5*58) oh my :(, not twice, would be sqrt 4*58 if similar
                    Answered by
            Anonymous
            
    V, W, and X are part of one polygon, and R, S, T are part of another polygon. So why is V to W calculated? 
    
                    Answered by
            Damon
            
    because if they were similar
then if V to W is 5
and R to S is 10
then if similar
W to X must be HALF of S to T
It is not, it is sqrt 5 times
I know which sides to compare because I drew a quick sketch of the two figures.
    
then if V to W is 5
and R to S is 10
then if similar
W to X must be HALF of S to T
It is not, it is sqrt 5 times
I know which sides to compare because I drew a quick sketch of the two figures.
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.