Asked by emma
If 800 feet of fencing is used to enclose a rectangular plot of land that borders a river, what is the maximum area that can be enclosed? Answer to the nearest square foot without commas. For example, if the answer is 1,000, write 1000.
Answers
Answered by
Damon
p + 2 q = 800 so p = 800 - 2 q
A = p q = (800 - 2q)q
A = -2 q^2 + 800 q
now you could find the vertex of this parabola easily with Algebra 2 by completing the square but you said calculus so
dA/dq = 0 at max = -4 q + 800
or
q = 200
then
p = 800 - 400 = 400
so
A = 80,000 ft^2 or about two acres
A = p q = (800 - 2q)q
A = -2 q^2 + 800 q
now you could find the vertex of this parabola easily with Algebra 2 by completing the square but you said calculus so
dA/dq = 0 at max = -4 q + 800
or
q = 200
then
p = 800 - 400 = 400
so
A = 80,000 ft^2 or about two acres
Answered by
Lebron
80,000 ft^2 just like how we gonna go back to back
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.