Asked by Camille
three 20 kilo ohms Resistors R1, R2, and R3 are in Series across an applied voltage of 120 V. What is the voltage drop across each resistor.
Answers
Answered by
MathMate
Resistance across resistors in <i>series</i>
= R1+R2+R3
Voltage across each resistor is proportional to the fraction of each over the total.
For <b>example</b>,
resistors R1=2,R2=1,R3=3, ohms are connected in <i>series</i> and subject to a voltage of 12 volts,
Resistance of resistors in series
R=R1+R2+R3=2+1+3=6
voltage drops
V1=(R1/R)*12=(2/6)*12=4 volts
V2=(R2/R)*12=(1/6)*12=2 volts
V3=(R3/R)*12=(3/6)*12=6 volts
Check: total = 4+2+6=12 volts, ok.
= R1+R2+R3
Voltage across each resistor is proportional to the fraction of each over the total.
For <b>example</b>,
resistors R1=2,R2=1,R3=3, ohms are connected in <i>series</i> and subject to a voltage of 12 volts,
Resistance of resistors in series
R=R1+R2+R3=2+1+3=6
voltage drops
V1=(R1/R)*12=(2/6)*12=4 volts
V2=(R2/R)*12=(1/6)*12=2 volts
V3=(R3/R)*12=(3/6)*12=6 volts
Check: total = 4+2+6=12 volts, ok.
Answered by
Henry
Rt = R1+R2+R3 = 20k + 20k + 20k = 60k Ohms. = Total resistance.
I = E/Rt = 120/60k = 2 mA(milliamps).
V1 = V2 = V3 = I*R1 = 2 * 20k = 40 Volts
Therefore, the voltage across each resistor is 40 Volts.
I = E/Rt = 120/60k = 2 mA(milliamps).
V1 = V2 = V3 = I*R1 = 2 * 20k = 40 Volts
Therefore, the voltage across each resistor is 40 Volts.
Answered by
Camille
Thanks.. :)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.