Asked by Andrea
A car manufacturing company (the Company) can produce a car for $3000.00 and a truck for $5000.00. Suppose "C" cars and "T" trucks are sold to the dealer at mark-ups, respectively, of 20 and 30 percent. If the Company made a profit of $27 million on sales of $137 million in one particular year, how many cars and trucks were sold by the company in that year?
I have to get 2 equations from this and use the substitution or elimination method
I have to get 2 equations from this and use the substitution or elimination method
Answers
Answered by
drwls
The first equation would be
3000 C + 5000 T = 137,000,000 (total sales)
The second equation would be
3000*.20*C + 5000*.30*T = 27,000,000 (profit)
This can be rewritten
600 C + 1500 T = 27,000,000
Now solve those two equations for C and T, the number of cars and trucks sold, using either method.
3000 C + 5000 T = 137,000,000 (total sales)
The second equation would be
3000*.20*C + 5000*.30*T = 27,000,000 (profit)
This can be rewritten
600 C + 1500 T = 27,000,000
Now solve those two equations for C and T, the number of cars and trucks sold, using either method.
Answered by
Andrea
I tried it this way and my answer for
Answered by
Andrea
I tried to solve it using those equations but my answer for T is a negative number which I know it can't be
Answered by
drwls
I get the same result as you, and checked my work. I have no explanation
Answered by
Brandon
Sometimes one winds up with an "erroneous" solution.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.