Asked by Lucky Lady

A researcher wishes to estimate the proportion of college students who cheat on exams. A poll of 490 college students showed that 33% of them had, or intended to, cheat on examinations. Find the margin of error for the 95% confidence interval.

solution I have but what do I need to omit?

Poll = 490 college students
33% revealed they had, intended to, and cheat on exams
Find the ME for 95% interval.
Solution: The critical value = 1.96 but it has to been rounded to 2 to calculate the 95% confidence interval. However, the 95% CI formula for proportion is p̂ ± 2 X √p̂(1-p)/n.
The standard deviation = √ (0.33 * 0.67* 490)
= 10.41
E = (zs)/ √ (n) = 196 * 10.41)/ √ (490)
= 0.92
ME = (1.96) [√pq/n)]
= (1.96) [√ (0.33 * 0.67)/ 490]
= (1.96) [√0.00045]
= 1.96 * 0.021
= 1.981 ≈ 1.96
The sample proportion, p̂ = 33% or 0.33 is the best estimate of the population proportion. The formula used to determine the margin of error
is: E ≈ 2 √ [p̂ (1- p̂) / n]
E ≈ 2 √ [.33(1- .33) / 490]
E ≈ 2 √ (.2211 / 490)
E ≈ 2 √ 4.5122
E ≈ 2 * 0.02124
E ≈ 0.4248 (Answer)

Answers

Answered by MathGuru
95% confidence interval is equivalent to z = 1.96, so if you round to 2, then your calculations for E are almost correct. I think you missed a 0; I get E = 0.04248. The formula used to determine the margin of error is all you should need to answer the problem.
Answered by Ashworth
0.0427
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions