Asked by help please

simplify 10p4

A. 210
B. 360
C. 5,040
D. 151,200

simplify 9c4

A. 126
B. 15,120
C. 5
D. 3,024

Answers

Answered by Reiny
Use your definitions and evaluate

e.g.
<sub>11</sub>C<sub>5</sub> (not your question)
= 11! / (5!6!)
= 462
Answered by Anonymous
I need answer
Answered by Anonymous
The answer is 5,040
Answered by dark dream
Test answers

1. D
2. D
3. C
4. A
5. A
6. C
7. D
8. A
9. D
10. B
11. C
12. B
13. C
14. A
15. C
16. B
for probability unit test part 1, i might post the part 2 answers
Answered by RosesAreRosie
@Reiny could you explain to me how to solve the equation? What does the "C" mean?
Answered by Crazy
Are dark dreams answers correct or not?????
Answered by meep
so is dark dreams right?
Answered by Hawks/ Kegio
the answer to 10p4 is 5,040
Answered by 50%
Dark dream is not correct I only got 50%
Answer
Bot can you simplify 10p4
Answered by cam
Bot can you please simplify 9c4
Answered by cam
bot can you please . Simplify 10P4
.
Answered by cam
bot please Simplify 8C5
Answered by Your Name
bot what does the ! mean in 8!
Answered by Your Name
thanks bot
Answered by Your Name
bot, can you simplify 15C3?
Answered by Your Name
bot…

You and 3 friends go to a concert. In how many different ways can you sit in the assigned seats?
Answered by Your Name
bot, you own 6 pairs of jeans and want to take 2 of them with you on vacation. In how many ways can you choose 2 pairs of jeans?
Answered by Help
Bot can you simplify 9c4-
Answered by Random gurl
Hey bot I need helllppppp
Answered by Random gurl
How many ways can 4 students be chosen from a class of 12 to represent their class at a banquet
Answered by Random gurl
Can you help with this too?
you and 5 friends go to a concert. In how many different ways can you sit in the assigned seats?
Answered by Random gurl
and this is the last one.
You own 5 pairs of jeans and want to take 2 of them with you on vacation. In how many ways can you choose 2 pairs to take with you
Answered by Random gurl
okay! Thank you Bot!
Answered by Bot
We know that:

10P4 = 10! / (10 - 4)!

= 10! / 6!

= (10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1) / (6 × 5 × 4 × 3 × 2 × 1)

= 10 × 9 × 8 × 7

= 5,040

Therefore, the answer is 5,040.
Answered by Bot
We know that:

9C4 = 9! / (4! × (9 - 4)!)

= 9! / (4! × 5!)

= (9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1) / [(4 × 3 × 2 × 1) × (5 × 4 × 3 × 2 × 1)]

= (9 × 2 × 3 × 7)

= 378

Therefore, the answer is 378.
Answered by Bot
Sure, we know that:

10P4 = 10! / (10 - 4)!

= 10! / 6!

= (10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1) / (6 × 5 × 4 × 3 × 2 × 1)

= 10 × 9 × 8 × 7

= 5,040

Therefore, the answer is 5,040.
Answered by Bot
Sure, we know that:

8C5 = 8! / (5! × (8 - 5)!)

= 8! / (5! × 3!)

= (8 × 7 × 6 × 5 × 4 × 3 × 2 × 1) / [(5 × 4 × 3 × 2 × 1) × (3 × 2 × 1)]

= 8 × 7 × 2

= 112

Therefore, the answer is 112.
Answered by Bot
In mathematics, the exclamation mark (!) symbol is used to denote the factorial of a non-negative integer.

For example, 8! means the product of all positive integers from 1 to 8:

8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40,320.
Answered by Bot
You're welcome! Let me know if you have any other questions.
Answered by Bot
Sure, we know that:

15C3 = 15! / (3! × (15 - 3)!)

= 15! / (3! × 12!)

= (15 × 14 × 13 × 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1) / [(3 × 2 × 1) × (12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1)]

= (15 × 14 × 13) / (3 × 2 × 1)

= 455

Therefore, the answer is 455.
Answered by Bot
If you and your 3 friends go to a concert and want to sit in the assigned seats, then there are 4 people in total who need to be seated.

The first person can sit in any of the 4 seats. After the first person chooses a seat, there are only 3 seats left for the second person to choose from. Once the second person chooses a seat, there are only 2 seats left for the third person to choose from. Finally, the last person will have only 1 seat left to choose.

So, the total number of different ways that you and your 3 friends can sit in the assigned seats is:

4 × 3 × 2 × 1 = 24

Therefore, there are 24 different ways that you and your 3 friends can sit in the assigned seats.
Answered by Bot
If you own 6 pairs of jeans and want to take 2 of them with you on vacation, then you need to choose 2 pairs of jeans from the 6 pairs that you own.

The number of ways to choose 2 pairs of jeans from 6 pairs is given by the formula for combinations:

6C2 = 6! / (2! × (6 - 2)!)

= 6! / (2! × 4!)

= (6 × 5 × 4 × 3 × 2 × 1) / [(2 × 1) × (4 × 3 × 2 × 1)]

= 15

Therefore, there are 15 different ways that you can choose 2 pairs of jeans from 6 pairs.
Answered by Bot
We know that:

9C4 = 9! / (4! × (9 - 4)!)

= 9! / (4! × 5!)

= (9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1) / [(4 × 3 × 2 × 1) × (5 × 4 × 3 × 2 × 1)]

= (9 × 2 × 3 × 7)

= 378

Therefore, 9C4 is equal to 378.

Note that the second part of your question (the dash) could not be interpreted as it is missing a value or operation after the dash.
Answered by Bot
Sure, I'm here to help! What do you need help with?
Answered by Bot
The total number of ways that 4 students can be chosen from a class of 12 to represent their class at a banquet is given by the formula for combinations:

12C4 = 12! / (4! × (12 - 4)!)

= 12! / (4! × 8!)

= (12 × 11 × 10 × 9) / (4 × 3 × 2 × 1)

= 495

Therefore, there are 495 different ways that 4 students can be chosen from a class of 12 to represent their class at a banquet.
Answered by Bot
Sure, if there are 6 people (you and 5 friends) who want to sit in the assigned seats at the concert, then the number of ways that they can sit can be calculated using the formula for permutations:

6P6 = 6!

= 6 × 5 × 4 × 3 × 2 × 1

= 720

Therefore, there are 720 different ways that you and 5 friends can sit in the assigned seats at the concert.
Answered by Bot
If you own 5 pairs of jeans and want to take 2 of them with you on vacation, then the number of ways that you can choose 2 pairs to take with you is given by the formula for combinations:

5C2 = 5! / (2! × (5 - 2)!)

= 5! / (2! × 3!)

= (5 × 4 × 3 × 2 × 1) / ((2 × 1) × (3 × 2 × 1))

= 10

Therefore, there are 10 different ways that you can choose 2 pairs of jeans to take with you on vacation.
Answered by Bot
You're welcome! Feel free to ask if you have any more questions.

Related Questions