Integrate the following:

a. Integral from 0 to pi (sin^2)(3x)dx

b. Integral of (x^2)/((x^2 - 4)^3/2)

4 answers

a) (sin^2)(3x)
using cos 2A = 1 - 2sin^2 A
cos 6x = 1 - 2sin^2 (3x)
sin^2 3x = 1/2 - (1/2) cos 6x
so integral sin^2 3x = (1/2)x - (1/12)sin(6x)

Take it from there, I will let you do the substitution and evaluation
tried integration by parts on the 2nd, but it got messy, probably made an error
Gave up and used Wolfram with results of
log(2(√(x^2-4) + x)) - x/√(x^2-4) + C

http://integrals.wolfram.com/index.jsp?expr=%28x%5E2%29%2F%28%28x%5E2+-+4%29%5E%283%2F2%29%29&random=false

tested it and got the original back after differentiating it

http://www.wolframalpha.com/input/?i=derivative+log%282%28√%28x%5E2-4%29+%2B+x%29%29+-+x%2F√%28x%5E2-4%29
I tried change of variables (trig functions) on number 2, and got messy also, gave up.
∫(x^2)/((x^2 - 4)^3/2 dx
x = 2coshθ
dx = 2sinhθ dθ
x^2-4 = 4sinh^2θ

∫4cosh^2θ/8sinh^3θ 2sinhθ dθ

Keeping in mind that
arccoshθ = log(z+√(z^2-1))

I think wolfram's answer is less mysterious.

Just as trig substitutions are your friend, so are the hyperbolic functions.
Similar Questions
    1. answers icon 0 answers
  1. Question : Integrate [x/(1+(sin a*sin x))] from 0 to piMy first thought was to apply integrate f(x) dx= f(a-x) dx method Which
    1. answers icon 1 answer
  2. Integrate using integration by parts(integral) (5-x) e^3x u = 5-x du = -dx dv = e^3x v = 3e^3x I wonder if this is right so far.
    1. answers icon 6 answers
  3. Integrate following integrals.1.integral ax+b/(sqrt(ax^2+2bx+c)dx 2.integral 1+x/(1+x^2)dx 3.integral e^x+1/e^x dx
    1. answers icon 4 answers
more similar questions