Asked by Ryan B.
                For what values of a and b is the line –2x+y=b tangent to the curve y=ax^3 when x=–2? 
a= ?
b= ?
Thanks guys!
            
        a= ?
b= ?
Thanks guys!
Answers
                    Answered by
            Brady
            
    First, you rewrite the equation as:
-2∙-2 + a∙-2^3
Next, you solve some of it to get:
4 + a∙8
Finally, if you can't figure out what a and b are, you can do what I did above, and try figuring it out. I did not know how to solve to get a and b, but at least you have the things above to help.
    
-2∙-2 + a∙-2^3
Next, you solve some of it to get:
4 + a∙8
Finally, if you can't figure out what a and b are, you can do what I did above, and try figuring it out. I did not know how to solve to get a and b, but at least you have the things above to help.
                    Answered by
            Brady
            
    Oh, and by the way, it is actually Calculus instead of Caculus for the subject name of your problem. I just noticed it.
    
                    Answered by
            Brady
            
    For a if it is 4, you will get the next equation of:
4 + 4∙8 = b
Finally, you solve, and you get:
36 as your answer for b.
So, a equals 4 and b equals 36.
Hint: you can always estimate values for a and then you solve, and whatever you get as your answer will be b.
    
4 + 4∙8 = b
Finally, you solve, and you get:
36 as your answer for b.
So, a equals 4 and b equals 36.
Hint: you can always estimate values for a and then you solve, and whatever you get as your answer will be b.
                    Answered by
            Steve
            
    y = ax^3
y' = 3ax^2
at x=-2, y' = 12a
The line y=2x+b has slope 2, so
12a=2
a = 1/6
at x = -2, y = -8a = -4/3 so the line must go through (-2,-4/3)
So, the tangent line has slope 2 and goes through (-2,-4/3)
y = 2x+b
-4/3 = -4 + b
b = 8/3
So, now we have
y = 2x - 8/3
is tangent to
y = 1/6 x^3
at (-2,-4/3)
To confirm this, visit
http://www.wolframalpha.com/input/?i=plot+y+%3D+1%2F6+x^3+and+y+%3D+2x%2B8%2F3+for+x+%3D+-4+..+4
    
y' = 3ax^2
at x=-2, y' = 12a
The line y=2x+b has slope 2, so
12a=2
a = 1/6
at x = -2, y = -8a = -4/3 so the line must go through (-2,-4/3)
So, the tangent line has slope 2 and goes through (-2,-4/3)
y = 2x+b
-4/3 = -4 + b
b = 8/3
So, now we have
y = 2x - 8/3
is tangent to
y = 1/6 x^3
at (-2,-4/3)
To confirm this, visit
http://www.wolframalpha.com/input/?i=plot+y+%3D+1%2F6+x^3+and+y+%3D+2x%2B8%2F3+for+x+%3D+-4+..+4
                    Answered by
            Steve
            
    typo near the end
y = 2x + 8/3
    
y = 2x + 8/3
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.