Asked by Alex
Original Question:
Neutral metal sphere A, of mass 0.10kg, hangs from an insulating wire 2.0m long. An identical metal sphere B, with charge -q is brought into contact with sphere A. Sphere A goes 12 degrees away from Sphere B. Calculate the initial charge on Sphere B.
Note: when one object with charge Q is brought in contact with a neutral object 1/2 the charge is transferred to the neutral object.
I don't understand how to do this.
Ans: 3.9x10^-6C
Posted by drwls:
After the spheres touch, each one acquires a charge of -q/2, and the Coulomb repulsion force pushes them away from each other. If each one hangs inclined A = 12 degrees, and T is the tension in the wire,
T cos A = M g
T sin A = k (Q/2)^2/(2L sinA)^2
k is the Coulomb constant, 8.99 x 10^9 N�m^2/C^2
2L sin A is the separation of the spheres
T can be eliminated by dividind one equation by the other
tan A = k (Q/2)^2/(2L sinA)^2/(Mg)
M g tan A = k Q^2/(16 L sin A)^2
This should let you solve for Q
Question - I don't understand what Mg is supposed to be. Also how did you get 16? and on the right side? Is that supposed to be the tension?
I found the distance between A and B to be 0.4158. Can you please explain the rest? I'm not getting the right answer.
Neutral metal sphere A, of mass 0.10kg, hangs from an insulating wire 2.0m long. An identical metal sphere B, with charge -q is brought into contact with sphere A. Sphere A goes 12 degrees away from Sphere B. Calculate the initial charge on Sphere B.
Note: when one object with charge Q is brought in contact with a neutral object 1/2 the charge is transferred to the neutral object.
I don't understand how to do this.
Ans: 3.9x10^-6C
Posted by drwls:
After the spheres touch, each one acquires a charge of -q/2, and the Coulomb repulsion force pushes them away from each other. If each one hangs inclined A = 12 degrees, and T is the tension in the wire,
T cos A = M g
T sin A = k (Q/2)^2/(2L sinA)^2
k is the Coulomb constant, 8.99 x 10^9 N�m^2/C^2
2L sin A is the separation of the spheres
T can be eliminated by dividind one equation by the other
tan A = k (Q/2)^2/(2L sinA)^2/(Mg)
M g tan A = k Q^2/(16 L sin A)^2
This should let you solve for Q
Question - I don't understand what Mg is supposed to be. Also how did you get 16? and on the right side? Is that supposed to be the tension?
I found the distance between A and B to be 0.4158. Can you please explain the rest? I'm not getting the right answer.
Answers
There are no AI answers yet. The ability to request AI answers is coming soon!
There are no human answers yet. A form for humans to post answers is coming very soon!