a.Find the slope of the tangent line to the curve y=9-2x^2 at the point (2,1)

b.Find an equation of this tangent line.

1 answer

as you know, the slope of the tangent line is just the derivative. So,

y'(x) = -4x
giving us
y'(2) = -8

and now we have a point and a slope, so the line is

y-1 = -8(x-2)
Similar Questions
  1. 1. Given the curvea. Find an expression for the slope of the curve at any point (x, y) on the curve. b. Write an equation for
    1. answers icon 3 answers
  2. original curve: 2y^3+6(x^2)y-12x^2+6y=1dy/dx=(4x-2xy)/(x^2+y^2+1) a) write an equation of each horizontal tangent line to the
    1. answers icon 1 answer
  3. Consider the curve defined by 2y^3+6X^2(y)- 12x^2 +6y=1 .a. Show that dy/dx= (4x-2xy)/(x^2+y^2+1) b. Write an equation of each
    1. answers icon 3 answers
  4. original curve: 2y^3+6(x^2)y-12x^2+6y=1dy/dx=(4x-2xy)/(x^2+y^2+1) a) write an equation of each horizontal tangent line to the
    1. answers icon 0 answers
more similar questions